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Abstract 

 
Forecasting demand and developing inventory strategies for parts with an intermittent demand history presents a 
formidable challenge.  We review the results of efforts to forecast part failures and determine inventory strategies 
for military aircraft parts.  Applications of bootstrapping and Croston's method are summarized and the results 
contrasted with more traditional time series approaches.  
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1. Intermittent Time Series 
An intermittent time series is a time series of non-negative integers where some of the values are zero [1].  This paper 
explores forecasting and inventory planning of intermittent series characterized by a time series pattern that contains 
frequent and irregularly spaced zero values.  Table 1 shows an example of a time series that exhibits this property.  
Time series of this type are typical in the early failure histories of aircraft repair parts.   
 

Table 1. Intermittent Data Example 
Time Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Demand 2 1 5 0 0 0 0 1 0 0 0 0 1 0 1 
 
 
2. Traditional Techniques 
When traditional forecasting techniques are applied to an intermittent series, the results are frequently unsatisfactory.  
As a typical example, consider the application of a 3-period moving average model with one period lead-time to the 
data in Table 1.  The resulting forecasts and absolute forecast errors are shown in Table 2.  The mean absolute error 
over the twelve time periods (period 4 to period 15) is 0.86.  Contrast this with the naïve strategy of forecasting zero for 
each time period.  This naïve strategy generates a mean absolute error over the twelve time periods of 0.25.  This raises 
the question of whether there is any benefit in attempting to forecast at all. 
 

Table 2. 3-Period Moving Average Forecast and Error 
Time Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Demand 2 1 5 0 0 0 0 1 0 0 0 0 1 0 1 
Forecast    2.7 2.0 1.7 0.0 0.0 0.3 0.3 0.3 0.0 0.0 0.3 0.3 
Abs. Error    2.7 2.0 1.7 0.0 1.0 0.3 0.3 0.3 0.0 1.0 0.3 0.7 

 
 
Table 3 shows the results of applying a simple exponential smoothing model to the example data.  For this model, the 



parameter alpha is set to 0.2 and the initial forecast is set equal to the initial demand.  The mean absolute error over the 
twelve time periods is 0.99, which is once again inferior to the naïve approach of forecasting zeroes. 
 
It can legitimately be argued that the viability of traditional forecasting approaches is sensitive to the "intermittenness" 
of the series being forecast and the parameters selected for the model.  However, the results shown above are typical 
and representative of those that were achieved in the case study presented in this paper. 
 

Table 3. Simple Exponential Smoothing Forecast (alpha=0.10) and Error 
Time Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Demand 2 1 5 0 0 0 0 1 0 0 0 0 1 0 1 
Forecast 2.0 2.0 1.8 2.4 2.0 1.6 1.2 1.0 1.0 0.8 0.6 0.5 0.4 0.5 0.4 
Abs. Error    2.4 2.0 1.6 1.2 0.0 1.0 0.8 0.6 0.5 0.6 0.5 0.6 

 
 
3. The Case Under Study 
The time series under consideration in this study are order and delivery data covering 163 periods for approximately 
30,000 parts that are uniquely used on the KC-135 [2].  The ongoing project of which this study is a component 
aims to improve the forecasting of demand for these (and other) parts that have very low demand.  Of particular 
interest are parts that experience demand “surges”.  Surge parts are defined as parts that have little or no demand 
over the history of the aircraft and then suddenly experience a large increase in demand [2].  Each part under 
consideration can be associated with a unique identification number known as an NIIN.  Croston’s method and a 
bootstrapping technique are used in conjunction with a clustering technique in an attempt to improve the forecast of 
demand for these intermittent parts.  
 
3. Inventory Aspects 
An important aspect of the problem being considered is to understand the inventory implications of the forecasts. If 
demand for a part is incorrectly forecast, then either an inventory excess or an inventory shortage will occur.  If the 
part is critical to the safe and effective operation of an aircraft, then a shortage may well lead to a grounded aircraft. 
 This aircraft could potentially be a fighter jet (not the example considered here) or a critical supplies transport, in 
which case, the strategic importance of the loss of capability incurred cannot easily be quantified in dollars.  Thus, it 
is of paramount importance, where possible and economically viable, to have the fewest number of aircraft 
grounded.  The implication of this aspect of the problem is that the impact of inventory shortages and inventory 
excesses may be very different.  A shortage in inventory may be more harmful than an excess in inventory.  The 
quantification of this difference is elusive and is handled in this study through the use of a sensitivity analysis.  The 
sensitivity analysis explores a range of ratios (cost of shortage/cost of excess) to determine if this factor is 
significant in determining the preferred forecasting approach.   
 
A second significant inventory aspect of this problem is the consideration of lead-time.  The majority of the parts 
considered in this study have an average order lead-time of eight periods.  That is, an order place in period 1 will 
arrive and be available for use in period 9. This long lead-time magnifies the impact of shortages and the impact of a 
forecasting model that is slow to respond to changes in the underlying demand pattern. 
 
4. Measure of Error 
Some forecast analysts believe that error measures should account for asymmetries in the cost of errors [3].  In other 
words, a positive forecast error is treated differently than a negative forecast error.  Traditional measures of error, 
such as MSE (mean squared error), fail to effectively evaluate forecasting methods when the costs of errors are 
asymmetrical.  Since the present case study presents a situation where asymmetry is important, this necessitates the 
development of a forecast evaluation method that considers the differing levels of impact due to shortages and 
excesses in inventory.  This evaluation is handled through a sensitivity analysis.  The first step in the analysis is to 
compute the error in each period generated from using a particular forecasting approach.  On-hand inventories and 
order receipts for each period are accounted for in these calculations.  In each period, either a shortage or an excess 
will occur.  Tallies are kept of the cumulative number part shortages and part excesses.  Summing the total number 
of shortages and the total number of excesses across the forecasted time periods determines the initial performance 



measure of the forecasting method.  Table 4 illustrates this calculation.  This calculation is repeated for each part 
and each forecasting methods under consideration. 
 

Table 4.Calculation of Total Shortages and Excesses 
Time Period 0 1 2 3 4 5 6 7 8 9 10 11    
Inventory 0          18     
Fcst Error  -2 -1 -5 0 0 0 0 -1 0 0 0    
Shortages  2 3 8 8 8 8 8 9 9    Shortages 63 
Excesses           9 10  Excesses 19 

 
 
A sensitivity analysis is then conducted to determine the sensitivity of selecting a preferred forecasting method to 
the increasing weight (importance) placed on shortages.  This is accomplished by multiplying the number of 
shortages by a weighting factor prior to calculating the final sum.  This sensitivity analysis is illustrated in Table 5.  
Table 5 is then used to determine which technique dominates at each level of the sensitivity analysis.  Dominance is 
established by the forecasting method that generates the lowest value of the weight sum of shortages and excesses.  
The highlighting in Table 5 illustrates identification of dominance.  A forecasting method may dominate across all 
the assigned weights.  Alternatively a forecasting method can dominate only beyond a threshold weight (as shown 
in Figure 5) or dominance can shift between the forecasting methods with no clear pattern. 
 
                 Table 5.  Sensitivity analysis and determination of the dominant forecasting technique 

Part #1 Part Period Increasing Weight on Shortages 

Forecasting 
Method 

Shortage
s 

(S) 

Excesse
s 

(E) 
S+E 1.5S+

E 2S+E 5S+E 7S+E 10S+
E 

20S+
E 

50S+
E 

Method 1 40 44 84 104 124 244 324 444 644 844 
Method 2 44 106 150 172 194 326 414 546 766 986 
Method 3 28 98 126 140 154 238 294 378 518 658 

 
 
5. Croston's Method 
Croston’s method deals with the problem of forecasting demand levels when the demand patterns are not regular 
[4].  The method was proposed in 1972 and has since established itself as the standard approach to forecasting 
problems with irregular patterns.  Croston observed that the use of the traditional exponential smoothing for 
intermittent demands is not suitable, since it tends to overestimate the demand levels.  The alternative that Croston 
proposed involves breaking the intermittent demand time series into two constituent time series - one series for the 
non-zero demand values and other series for the time interval between the non-zero demand values.  Traditional 
exponential smoothing is then used on each of the constituent parts separately.  As an illustration, Table 6 shows the 
two Croston’s constituent time series that would result from the data in Table 1. 
 

Table 6.  Croston's Constituent Time Series for the Data in Table 1 
Non-zero element 2 1 5 1 1 1 
Interval 1 1 5 5 2  

 
 
Stated briefly, Croston’s algorithm works as follows: 
If the actual demand at time t, yt = 0, then 11 ˆˆ ,ˆˆ −− == tttt ppzz , where  is the forecast estimate made at time 

t and is the time period estimate made in the same time t. This implies that forecasts are not updated when there 
is no demand at time t (y

tẑ

tp̂
t=0).  Alternatively, if the actual demand at time t, yt ≠ 0, then 

)ˆ(ˆˆ ),ˆ(ˆˆ 1111 −−−− −+=−+= ttttttt pqppzyzz αα  where α is the smoothing constant and  is the 
difference between actual demand at time t and the previous non-zero demand.  Croston assumes that the demands 

q



occur as a Bernoulli process and that the demand sizes are Normal IID (independent, identically distributed).  
 
Given the inherent importance of the problem of intermittent demand, Croston’s method has undergone 
considerable scrutiny, as evidenced by the continuing and sustained interest in his algorithm.  Johnston and Boylan 
[5] studied the effect of uncertainty in the elapsed time between active periods.  Willemain et al. [6] studied the 
performance of Croston’s method compared to the exponential smoothing technique, when applied to (i) artificial 
data purposefully created to violate Croston’s assumptions, and (ii) real world data from industrial sources.  Their 
results demonstrate that Croston’s method is robust and superior in forecast performance when compared to 
exponential smoothing. 
6. Bootstrap Method 
In a general inventory demand forecasting problem, the objective is to minimize the cost for the inventory system by 
making the best decision of what to purchase and when.  One approach to making this decision is to determine the 
underlying probability distribution for part demand and then use knowledge of this distribution to provide a 
specified level of protection against shortages.  Unfortunately, in a low-demand situation, the demand history of a 
part may not contain sufficient data to accurately estimate the demand distribution parameters.  Moreover, standard 
distributions, such as Poisson and compound Bernoulli, may not effectively approximate the observed distribution.  
 
To cope with these limitations, a clustering-bootstrap method was developed.  Clustering is used to classify the 
NIIN’s into groups that have similar patterns in their time series histories.  Clustering provides the following 
benefits: (i) demand history for similar parts are pooled to provide better statistics for forecasting models and (ii) 
separate forecasting models may be constructed for each cluster rather than each part.  This method uses the 
information from a group of parts to estimate the distribution without having to rely on distribution assumptions [7]. 
 
The grouping of the parts is based on the similarity in their order pattern history. The similarity chosen was the 
Euclidean distance between the cumulative history of orders up to the period of analysis.  This choice increases the 
correlation of quarters that are close to one another and is also highly influenced by the total number of parts 
ordered.  The grouping is made using a fuzzy clustering method.  Fuzzy clustering assigns a membership value for 
each element to each cluster. This feature is also used for detecting outliers (parts that do not fall reasonably into 
any cluster). 
 
Having grouped the similar parts, the application of bootstrapping is straightforward.  Bootstrapping uses a 
sampling with replacement method to generate estimates of the distribution parameters based on the distribution of 
the sampled elements.  Since the distribution that is being forecast is the total number of parts needed over the lead-
time, the sampling is done on groups of periods of the same part to ensure that the time correlation is maintained. 
 
The result of the bootstrap analysis is a probability distribution of the demand over the number of periods (lead-
time) that are being analyzed.  In a group there can be more than one lead-time, therefore more than one bootstrap 
analysis may be done within the same group to generate the distributions for the required number of periods.  The 
forecast is generated from the probability distribution by determining a confidence level with respect to expected 
shortages, such that a specified proportion of the parts will have sufficient stock to fulfill the all the orders expected 
in a given period. 
 
7. Results of Preliminary Work 
A set of 72 NIIN’s were chosen and forecasts were made for each of these NIIN’s using Bootstrapping techniques 
with 25%, 50% and 75% confidence levels and Croston’s method corresponding to α values of 0.1, 0.2 and 0.7.  
These forecasting methods were then evaluated using the sensitivity analysis method described in Section 4.0.  A 
count of the number of times each of the forecasting methods dominated within each of the weight schemes is 
illustrated in Figure 1.  
 
8. Conclusions and Continuing Work 
Based on the evidence that resulted from the study of the performance of the forecasting methods on 72 NIIN’s, it 
seems apparent that Bootstrapping technique based on 75% confidence level is preferred when the weight on the 
shortages exceeds 1.5.  If shortages and excesses are equally weighted (weight = 1), no clearly preferred forecasting 



method emerges.  Work on this project continues to explore the significance and ramifications of these results.  
Additional work is also being pursued to explore combining the Bootstrap method and Croston’s method to study 
the performance of the combined forecast against the other forecasting methods.  
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Figure 1. Comparative Evaluation of Croston’s and Bootstrap forecasts 
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