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Abstract

Forecasting demand and developing inventory strategies for parts with an intermittent demand history presents a
formidable challenge. We review the results of efforts to forecast part failures and determine inventory strategies
for military aircraft parts. Applications of bootstrapping and Croston's method are summarized and the results
contrasted with more traditional time series approaches.
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1. Intermittent Time Series

An intermittent time series is a time series of non-negative integers where some of the values are zero [1]. This paper
explores forecasting and inventory planning of intermittent series characterized by a time series pattern that contains
frequent and irregularly spaced zero values. Table 1 shows an example of a time series that exhibits this property.
Time series of this type are typical in the early failure histories of aircraft repair parts.

Table 1. Intermittent Data Example
Time Period 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
Demand 2 1 5 0 0 0 0 1 0 0 0 0 1 0 1

2. Traditional Techniques

When traditional forecasting techniques are applied to an intermittent series, the results are frequently unsatisfactory.
As a typical example, consider the application of a 3-period moving average model with one period lead-time to the
data in Table 1. The resulting forecasts and absolute forecast errors are shown in Table 2. The mean absolute error
over the twelve time periods (period 4 to period 15) is 0.86. Contrast this with the naive strategy of forecasting zero for
each time period. This naive strategy generates a mean absolute error over the twelve time periods of 0.25. This raises
the question of whether there is any benefit in attempting to forecast at all.

Table 2. 3-Period Moving Average Forecast and Error

Time Period 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
Demand 2 1 5 0 0 0 0 1 0 0 0 0 1 0 1

Forecast 27120]17,00] 00| 03] 03] 03]00]00] 03] 03
Abs. Error 27120 17],00] 10| 03] 03] 03] 00] 1.0] 03] 0.7

Table 3 shows the results of applying a simple exponential smoothing model to the example data. For this model, the



parameter alpha is set to 0.2 and the initial forecast is set equal to the initial demand. The mean absolute error over the
twelve time periods is 0.99, which is once again inferior to the naive approach of forecasting zeroes.

It can legitimately be argued that the viability of traditional forecasting approaches is sensitive to the "intermittenness"
of the series being forecast and the parameters selected for the model. However, the results shown above are typical

and representative of those that were achieved in the case study presented in this paper.

Table 3. Simple Exponential Smoothing Forecast (alpha=0.10) and Error

Time Period 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15
Demand 2 1 5 0 0 0 0 1 0 0 0 0 1 0 1

Forecast 20120 18] 24120 16| 12| 10] 10| 08]06] 05]04] 05] 04
Abs. Error 24120 16]12]00] 10] 08] 06| 05| 06] 05] 0.6

3. The Case Under Study

The time series under consideration in this study are order and delivery data covering 163 periods for approximately
30,000 parts that are uniquely used on the KC-135 [2]. The ongoing project of which this study is a component
aims to improve the forecasting of demand for these (and other) parts that have very low demand. Of particular
interest are parts that experience demand “surges”. Surge parts are defined as parts that have little or no demand
over the history of the aircraft and then suddenly experience a large increase in demand [2]. Each part under
consideration can be associated with a unique identification number known as an NIIN. Croston’s method and a
bootstrapping technique are used in conjunction with a clustering technique in an attempt to improve the forecast of
demand for these intermittent parts.

3. Inventory Aspects

An important aspect of the problem being considered is to understand the inventory implications of the forecasts. If
demand for a part is incorrectly forecast, then either an inventory excess or an inventory shortage will occur. If the
part is critical to the safe and effective operation of an aircraft, then a shortage may well lead to a grounded aircraft.
This aircraft could potentially be a fighter jet (not the example considered here) or a critical supplies transport, in
which case, the strategic importance of the loss of capability incurred cannot easily be quantified in dollars. Thus, it
is of paramount importance, where possible and economically viable, to have the fewest number of aircraft
grounded. The implication of this aspect of the problem is that the impact of inventory shortages and inventory
excesses may be very different. A shortage in inventory may be more harmful than an excess in inventory. The
quantification of this difference is elusive and is handled in this study through the use of a sensitivity analysis. The
sensitivity analysis explores a range of ratios (cost of shortage/cost of excess) to determine if this factor is
significant in determining the preferred forecasting approach.

A second significant inventory aspect of this problem is the consideration of lead-time. The majority of the parts
considered in this study have an average order lead-time of eight periods. That is, an order place in period 1 will
arrive and be available for use in period 9. This long lead-time magnifies the impact of shortages and the impact of a
forecasting model that is slow to respond to changes in the underlying demand pattern.

4. Measure of Error

Some forecast analysts believe that error measures should account for asymmetries in the cost of errors [3]. In other
words, a positive forecast error is treated differently than a negative forecast error. Traditional measures of error,
such as MSE (mean squared error), fail to effectively evaluate forecasting methods when the costs of errors are
asymmetrical. Since the present case study presents a situation where asymmetry is important, this necessitates the
development of a forecast evaluation method that considers the differing levels of impact due to shortages and
excesses in inventory. This evaluation is handled through a sensitivity analysis. The first step in the analysis is to
compute the error in each period generated from using a particular forecasting approach. On-hand inventories and
order receipts for each period are accounted for in these calculations. In each period, either a shortage or an excess
will occur. Tallies are kept of the cumulative number part shortages and part excesses. Summing the total number
of shortages and the total number of excesses across the forecasted time periods determines the initial performance



measure of the forecasting method. Table 4 illustrates this calculation. This calculation is repeated for each part
and each forecasting methods under consideration.

Table 4.Calculation of Total Shortages and Excesses

Time Period 0 1 2 3 4 5 6 7 8 9 10 | 11

Inventory 0 18

Fcst Error -2 -1 -5 0 0 0 0 -1 0 0 0

Shortages 2 3 8 8 8 8 8 9 9 Shortages | 63
Excesses 9 10 Excesses 19

A sensitivity analysis is then conducted to determine the sensitivity of selecting a preferred forecasting method to
the increasing weight (importance) placed on shortages. This is accomplished by multiplying the number of
shortages by a weighting factor prior to calculating the final sum. This sensitivity analysis is illustrated in Table 5.
Table 5 is then used to determine which technique dominates at each level of the sensitivity analysis. Dominance is
established by the forecasting method that generates the lowest value of the weight sum of shortages and excesses.
The highlighting in Table 5 illustrates identification of dominance. A forecasting method may dominate across all
the assigned weights. Alternatively a forecasting method can dominate only beyond a threshold weight (as shown
in Figure 5) or dominance can shift between the forecasting methods with no clear pattern.

Table 5. Sensitivity analysis and determination of the dominant forecasting technique

Part #1 Part Period Increasing Weight on Shortages
. Shortage | Excesse
F‘;\r/f;issiing s s | S+E 1'%S+ 2SHE | SSHE | 7S+E 10ES+ ZOES+ > OES+
®) (E)
Method 1 40 44 84 104 124 | 244 | 324 444 644 844
Method 2 44 106 150 172 194 | 326 | 414 546 766 986
Method 3 28 98 126 140 154 | 238 | 294 378 518 658

5. Croston's Method

Croston’s method deals with the problem of forecasting demand levels when the demand patterns are not regular
[4]. The method was proposed in 1972 and has since established itself as the standard approach to forecasting
problems with irregular patterns. Croston observed that the use of the traditional exponential smoothing for
intermittent demands is not suitable, since it tends to overestimate the demand levels. The alternative that Croston
proposed involves breaking the intermittent demand time series into two constituent time series - one series for the
non-zero demand values and other series for the time interval between the non-zero demand values. Traditional
exponential smoothing is then used on each of the constituent parts separately. As an illustration, Table 6 shows the
two Croston’s constituent time series that would result from the data in Table 1.

Table 6. Croston's Constituent Time Series for the Data in Table 1
Non-zero element 2 1 5 1 1 1
Interval 1 1 5 5 2

Stated briefly, Croston’s algorithm works as follows:

If the actual demand at time t, y,= 0, then 2, =2, |, P, = P,_,, where Z, is the forecast estimate made at time
t and f)t is the time period estimate made in the same time t. This implies that forecasts are not updated when there
is no demand at time t (y=0). Alternatively, if the actual demand at time t, y; # 0, then
2, =2, ,+o(y,—-2,,), P, =P, +a(Q—P,,) where ais the smoothing constant and  is the

difference between actual demand at time t and the previous non-zero demand. Croston assumes that the demands



occur as a Bernoulli process and that the demand sizes are Normal IID (independent, identically distributed).

Given the inherent importance of the problem of intermittent demand, Croston’s method has undergone
considerable scrutiny, as evidenced by the continuing and sustained interest in his algorithm. Johnston and Boylan
[5] studied the effect of uncertainty in the elapsed time between active periods. Willemain et al. [6] studied the
performance of Croston’s method compared to the exponential smoothing technique, when applied to (i) artificial
data purposefully created to violate Croston’s assumptions, and (ii) real world data from industrial sources. Their
results demonstrate that Croston’s method is robust and superior in forecast performance when compared to
exponential smoothing.

6. Bootstrap Method

In a general inventory demand forecasting problem, the objective is to minimize the cost for the inventory system by
making the best decision of what to purchase and when. One approach to making this decision is to determine the
underlying probability distribution for part demand and then use knowledge of this distribution to provide a
specified level of protection against shortages. Unfortunately, in a low-demand situation, the demand history of a
part may not contain sufficient data to accurately estimate the demand distribution parameters. Moreover, standard
distributions, such as Poisson and compound Bernoulli, may not effectively approximate the observed distribution.

To cope with these limitations, a clustering-bootstrap method was developed. Clustering is used to classify the
NIIN’s into groups that have similar patterns in their time series histories. Clustering provides the following
benefits: (i) demand history for similar parts are pooled to provide better statistics for forecasting models and (ii)
separate forecasting models may be constructed for each cluster rather than each part. This method uses the
information from a group of parts to estimate the distribution without having to rely on distribution assumptions [7].

The grouping of the parts is based on the similarity in their order pattern history. The similarity chosen was the
Euclidean distance between the cumulative history of orders up to the period of analysis. This choice increases the
correlation of quarters that are close to one another and is also highly influenced by the total number of parts
ordered. The grouping is made using a fuzzy clustering method. Fuzzy clustering assigns a membership value for
each element to each cluster. This feature is also used for detecting outliers (parts that do not fall reasonably into
any cluster).

Having grouped the similar parts, the application of bootstrapping is straightforward. Bootstrapping uses a
sampling with replacement method to generate estimates of the distribution parameters based on the distribution of
the sampled elements. Since the distribution that is being forecast is the total number of parts needed over the lead-
time, the sampling is done on groups of periods of the same part to ensure that the time correlation is maintained.

The result of the bootstrap analysis is a probability distribution of the demand over the number of periods (lead-
time) that are being analyzed. In a group there can be more than one lead-time, therefore more than one bootstrap
analysis may be done within the same group to generate the distributions for the required number of periods. The
forecast is generated from the probability distribution by determining a confidence level with respect to expected
shortages, such that a specified proportion of the parts will have sufficient stock to fulfill the all the orders expected
in a given period.

7. Results of Preliminary Work

A set of 72 NIIN’s were chosen and forecasts were made for each of these NIIN’s using Bootstrapping techniques
with 25%, 50% and 75% confidence levels and Croston’s method corresponding to o values of 0.1, 0.2 and 0.7.
These forecasting methods were then evaluated using the sensitivity analysis method described in Section 4.0. A
count of the number of times each of the forecasting methods dominated within each of the weight schemes is
illustrated in Figure 1.

8. Conclusions and Continuing Work

Based on the evidence that resulted from the study of the performance of the forecasting methods on 72 NIIN’s, it
seems apparent that Bootstrapping technique based on 75% confidence level is preferred when the weight on the
shortages exceeds 1.5. If shortages and excesses are equally weighted (weight = 1), no clearly preferred forecasting



method emerges. Work on this project continues to explore the significance and ramifications of these results.
Additional work is also being pursued to explore combining the Bootstrap method and Croston’s method to study

the performance of the combined forecast against the other forecasting methods.
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Figure 1. Comparative Evaluation of Croston’s and Bootstrap forecasts
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